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A B S T R A C T

Seawater intrusion modelling is often used to assist with groundwater management in coastal areas and islands.
Although Smoothed Particle Hydrodynamics (SPH) schemes are able to simulate multi-fluid flows in porous
media, they have not been widely tested against experimental observations yet. Additionally, numerical methods
for groundwater flow problems need to be able to simulate pumping, which is an unexplored area in SPH. In this
study, an Explicit Incompressible SPH (EISPH) solver for multi-fluid flow in porous media is used to simulate the
dynamics of freshwater lenses in small islands, and is further developed to simulate groundwater pumping and
associated seawater upconing. Three methods to implement a sink term that models water pumping from an
aquifer are proposed and compared. The model is successfully tested against data from published laboratory-
scale experiments and other numerical models. The results of EISPH are comparable to other models. The in-
clusion of a sink for water particles to simulate pumping did not affect the stability of the simulations, although
one of the three methods led to results that better compared to experimental data. Hence, SPH modelling of
groundwater flows in porous media can be successfully achieved using the methods developed here.

1. Introduction

Seawater intrusion in groundwater aquifers is a global issue that
threatens availability of potable freshwater in coastal zones. A naturally
occurring process, seawater intrusion is often enhanced by changes in
fresh groundwater levels caused by pumping through extraction wells
and land-use change (Werner et al., 2013). The change in groundwater
levels causes reductions in the pressure exerted by overlying freshwater
columns, leading to upward intrusion of underlying seawater
(Bertorelle, 2014). The intrusion reduces freshwater storage volume
and might contaminate freshwater extraction wells (Werner et al.,
2013).

Seawater intrusion is also of great importance in oceanic islands,
where fresh groundwater is often the only potable water source (Stoeckl
and Houben, 2012). In oceanic islands, fresh groundwater often floats
over underlying seawater due to the density difference. This floating
body of freshwater is called a lens (Stoeckl and Houben, 2012; Stoeckl
et al., 2016). Freshwater lenses in oceanic islands often have limited
thickness and are separated from the underlying seawater by a mixing
zone. Dynamics of the mixing zone at the interface between freshwater
and seawater are governed by a density-dependent multi-fluid flow
(Werner et al., 2017). Factors associated with changes in rainfall

regimes and excessive pumping of freshwater can reduce the thickness
of these lenses as well as increase the possibility of seawater intrusion to
extraction wells (Stoeckl and Houben, 2012; Werner et al., 2017).

To investigate the process of seawater intrusion and understand the
vulnerability of fresh groundwater aquifers, numerous methods such as
field monitoring techniques, analytical studies, and numerical models
have been developed (Werner et al., 2013). Field techniques, such as
direct sampling and remote sensing (White, 1996), are used as the basis
for empirical equations (Werner et al., 2017). Analytical solutions have
been developed to predict the position of an interface between fresh-
water and seawater. These methods mostly assume a sharp interface
between two immiscible fluids and are derived for simplified steady-
state conditions in homogeneous aquifers (Vacher, 1988; Fetter, 1972;
Dagan and Bear, 1968). Numerical methods have been developed to
overcome the limitations of analytical solutions and are able to model
transient development of the interface of miscible fluids in aquifers
with spatial hydraulic heterogeneity. Numerical models mostly solve a
variable density multi-fluid flow coupled with a solute transport
equation (Werner et al., 2013). The most commonly used codes are
SUTRA (Voss et al., 2002) and SEAWAT (Langevin et al., 2008), which
solve the equations using finite-elements and finite differences, re-
spectively. Readers are referred to Werner et al. (2013, 2017) for a
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comprehensive review of common analytical and numerical studies.
Recently, particle methods, such as Smoothed Particle

Hydrodynamics (SPH), have been used to simulate multi-fluid flow in
porous media, with applications to lock-exchange (Basser et al., 2017;
Pahar and Dhar, 2017). Particle methods have been shown to have
performance similar to conventional mesh-based methods, with the
advantage to reduce numerical diffusivity (Herrera et al., 2009). The
modelling of anisotropic dispersion of solutes is one of the challenges
faced by SPH schemes, with effort being dedicated to the reduction of
the occurrence of negative concentrations (Avesani et al., 2015, 2017).
However, the use of SPH schemes for the modelling of solute dispersion
against experimental data are still rare. Further quantitative studies
with applications to engineering problems are required to test the
capability of SPH to simulate multi-fluid flow in porous media. Speci-
fically, the simulation of problems including pumping from wells re-
quires modelling a mass sink. One of the challenges associated with
simulating a mass sink is tracking the particles around the sink point to
ensure a well organised distribution of the particles, to ensure an ac-
curate SPH approximation. Another challenge is defining how to re-
move mass associated with the extracted freshwater.

The aim of this study is thus to investigate the applicability of an
SPH scheme, Explicit Incompressible SPH (EISPH) (Basser et al., 2017),
to simulate freshwater lens formations in islands and sea water up-
coning due to pumping. An algorithm to simulate point mass sinks was
developed and is presented here with applicability to water pumping.

2. Methods

2.1. Governing equations

The 2D governing equations for a flow of two or more in-
compressible fluids in saturated porous media, at the Darcy’s scale, with
mass sinks and solute transport are (Basser et al., 2017; Bear and
Bachmat, 2012)

=u· , (1)

= + + +D u
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where Eqs. (1)–(3) define mass, momentum and species conservation,
respectively, D

Dt
is the total derivative, u is the Darcian velocity equal to

u u,f f being the fluid intrinsic velocity and porosity, is a flux per
unit of volume due to point sinks, p is pressure, µ is the dynamic
viscosity, is the density, g is the gravitational acceleration, R is the
drag force imposed by porous media, C is scalar (salt here) concentra-
tion, andDd is the effective dispersion matrix of size 2 for the scalar (see
Appendix A).

2.2. SPH approximation

In SPH, the fluid domain is represented as an ensemble of
Lagrangian particles. The values of variables associated with each
particle are estimated using neighbouring particles. Readers are re-
ferred to Monaghan (1992, 1994, 2012) for a general description of the
particle approximation; only key features of the model used in this
study are presented here. The spatial volume, V, of particles in porous
media with spatially varying porosity is determined in accordance with
the porosity of the media, such that, when a particle moves into a
medium with lower porosity, the same amount of mass occupies a
larger volume (i.e., =V m /( )i i i i , where m is the fluid mass of the
particle and i refers to the ith particle) (Basser et al., 2017; Pahar and
Dhar, 2016).

The particle approximation of the governing equations reads

(Monaghan, 2005; Tran-Duc et al., 2016; Basser et al., 2017)
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where i and j refer to the ith and jth particles, is the permeability of
the medium, assumed to be constant, eij is a unit vector from i to Dj, d̄ij
is the average of the effective dispersion matrices of particles i and j, the
numbers in subscript of eij andDd̄ij reference a particular element in the
vector and the matrix, respectively. Eq. (6) equals zero where there is
no porous medium.

The EISPH method was used to solve Eqs. (1)–(3) (Nomeritae et al.,
2016); a detailed description of the numerical scheme used here is
presented in Appendix A.

2.3. Modelling a point sink

To carry out SPH simulations of problems including water extrac-
tion through wells, a method to describe a sink for the extraction of
water mass must be developed.

In a point sink, such as suction or pumping acting at a point, the
fluid surrounding the sink point moves toward the sink point. In SPH,
this means that fluid particles should move toward the sink point and a
portion of the fluid’s mass should be removed at a rate equal to the sink
rate. The extraction of the mass from a point is included in Eq. (1) (Bear
and Bachmat, 2012) in the form of fluid flux per unit of volume, , and
is approximated as

=
=

Q x x( ),
k

s

k k
1 (8)

where k is the kth sink point, s denotes the number of sink points, Q is
the sink rate and (·) is the Dirac function. Eq. (8) describes fluid flux
per unit volume due to sinks. The contributions of sinks for particle i is
approximated as

=
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where is a normalization factor equivalent to an approximation of
constant 1 and defined as (Monaghan, 2005; Monaghan et al., 2005)
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In Eq. (9), sink points within a distance equal to the radius of the
support of the kernel function from particle i are used to calculate ;
therefore, a sink point directly affects the particles (sink particles
hereafter) within a distance equal to the radius of the support domain of
the kernel function from the sink point. The particles outside the direct
influence of the sink point are indirectly affected through their inter-
action with the sink particles.

The term contributes to the pressure Poisson equation (Eq. (21)),
causing the pressure of the particles surrounding the sink point to
change in a way that they move towards the sink point.

Each particle in SPH carries a certain amount of fluid mass and in
order to account for the mass extraction due to the sink, it is
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unavoidable to reduce the particles mass and delete particles where and
when necessary. Three different methods for deleting particles are
proposed to investigate their advantages and disadvantages.

2.3.1. Solely Particle Removal (SPR)
In this method, the mass reduction due to the sink is handled by just

deleting particles, while maintaining the total particle mass constant in
between deletion. Individual particle mass still needs to be updated due
to changes in scalar concentration according to Eq. (7). One particle is
deleted after a certain number of time steps. The duration, tp, required
to delete one particle is determined using the volume of fluid in a
particle and the sink rate, such that

=t V
Q

,p (11)

where V is a spatial volume (Section 2.2) associated with a particle, and
V is the volume of fluid that each particle carries. Mass is reduced

(i.e., one particle is removed) at every time step that is a multiple of tp
(i.e., at times =t t ,p being an integer). Every time =t tp, the par-
ticle closest to the sink point is removed (Fig. 1a).

Because the sink particles move toward the sink point due to the
inclusion of in the pressure Poisson equation (Eq. (21)), the particle
deletion does not lead to a void in the vicinity of the sink point.

2.3.2. Mass Reduction and Particle Removal (MRPR)
Similar to SPR, one particle is removed every certain number of time

steps. However, in contrast to SPR, the mass of sink particles is gra-
dually reduced every time step before one particle is deleted. The

amount of mass reduction in one time step is divided among the sink
particles and subtracted from each sink particle’s mass. The mass re-
quired to be removed is partitioned between sink particles in two ways:
(1) in accordance to the kernel value (MRPRK ), so that the particles
closer to a sink point lose more mass than the distant ones, or (2) evenly
(MRPRE). Therefore, the amount of mass extracted from each particle is
determined using the sink rate, time step value, kernel value (used in
MRPRK ), and number of sink particles (used in MRPRE). When the time
required to delete one particle, tp, is reached, the closest particle to the
sink point is removed and the mass of the remaining sink particles is set
back to their initial mass value (Fig. 1b).

2.3.3. Constant Mass Reduction (CMR)
In this method, the mass of the sink particles is gradually reduced

every time step, as in MRPRE . The reduction in mass of the sink particles
continues until the mass of a sink particle drops below a cut-off value,
which here is set to 1% of particles initial mass value, at which time the
particle is removed (Fig. 1c). The reduction of mass in accordance to the
kernel value (as in MRPRK ) was found problematic as continuous re-
duction of particles mass causes clumping of particles close to a sink
point; this is further explained in Section 3.2.

2.4. Choice of kernel

The selection of a kernel function and smoothing length in a pro-
blem in media with different porosities should be handled carefully.
The spatial volume that an SPH particle occupies within a porous
medium represents both fluid and solid phases volume. Therefore, a

Fig. 1. The procedure for the reduction of mass due to a sink point using (a) Solely Particle Removal (SPR) (Section 2.3.1), (b) Mass Reduction and Particle Removal
(MRPR) (Section 2.3.2) and (c) Constant Mass Reduction (CMR) (Section 2.3.3).
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fluid particle with a given mass within a porous medium has a larger
spatial volume than a particle in a free flow domain with the same
mass. Having a larger spatial volume causes the particles to move apart
from each other, leading to a loss of resolution inside the porous
medium. Therefore, the number of particles inside the support domain
of the kernel function reduces and might not be sufficient to accurately
approximate the variable values and derivatives. To tackle this pro-
blem, a kernel function with a larger support domain should be used or
the smoothing length should be adjusted (Pahar and Dhar, 2016). The
former approach might lead to an excessive smoothing of the variable
values at the free flow domain. Furthermore, using a larger support
domain increases the number of interactions in the free flow domain,
leading to a higher computational cost. Here we use a variable
smoothing length. Additional terms associated with the derivative of
smoothing length are added to the momentum equation (Price and
Monaghan, 2004); however, these terms are neglected here.

A cubic spline weighting function (Liu and Liu, 2003), with a
variable smoothing length, was used here and is given by
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where d is a normalisation constant equal to 1/h, 15/(7 h2), or 3/
(2 h3) in one-, two- and three-dimensional domains, respectively, and

= =q x x h x h| |/ | |/i j ij . In 2D, we choose the smoothing length to be
inversely proportional to the square root of porosity as

=h x1.2 ,i
i (13)

where x is the average distance between fluid particles; therefore, in a
medium with lower porosity the smoothing length is larger.

Because the same value of smoothing length should be used for a
pair of interacting particles to conserve momentum, the smoothing
length for interacting particles i and j is calculated as = +h h h( )/2ij i j
(Rafiee et al., 2007).

2.5. Boundaries

2.5.1. Solid boundaries
A single layer of virtual particles is used to impose the impermeable

boundaries at walls. Virtual particles interact with fluid particles and
prevent them from penetrating the walls by exerting a Lennard-Jones
repulsive force given by Monaghan (1994)
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with c1 and c2 equal to 4 and 2 respectively, VL is the square of the
largest velocity in a flow, and rc represents a cut off distance which is set
to 0.8 times the initial distance between virtual particles. The virtual
particles are fixed in their position and never move. The initial distance
between the virtual particles is set to half the initial distance between
the fluid particles to ensure the impermeability of the walls.

2.5.2. Free/no-slip boundaries
Ghost particles are used to impose free-slip and no-slip boundary

conditions. Ghost particles are created by mirroring the fluid particles
within a distance of 2 h from the solid boundaries (Liu and Liu, 2003). A
ghost particle carries the same properties of the associated fluid par-
ticle. To impose no-slip boundary condition both components of velo-
city, parallel and normal, are reversed, while for free-slip conditions
only the normal component is reversed (Marrone et al., 2011). Our
investigations and previous studies (e.g. Nomeritae et al., 2016; Basser
et al., 2017) showed that ghost particles alone were not able to prevent

particles from penetrating the solid walls; therefore, the ghost particles
were used together with the virtual particles.

2.5.3. Inflow boundaries
Inflow particles are used to simulate inflow of fluid into the domain

(Nomeritae et al., 2018). The thickness of the zone occupied by inflow
particles, i.e., the inflow zone, is set to be larger than the radius of the
support domain of the kernel function. Inflow particles within the in-
flow zone are moved with a constant velocity determined by the inflow
rate. Once an inflow particle moves outside the inflow zone, it is turned
into a fluid particle and moves according to the governing equations.
The inflow particles’ velocity and pressure are used in approximating
the hydrodynamics of the fluid particles in a domain but not vice versa
(Federico et al., 2012).

2.5.4. Free surface boundaries
A pressure =p 0 is assigned to free surface particles. The free sur-

face particles are detected using fluid particles’ densities as in Basser
et al. (2017).

3. Results

The model is applied to two experimental studies to test different
aspects of the method and validate it. The experimental coastal fresh-
water lens in an isotropic porous medium studied in Stoeckl and
Houben (2012) is simulated to check the capability of the model to
reproduce the dynamics of fresh and salt water in a porous medium.
The experiment of salt water upconing induced by fresh water pumping
studied in Werner et al. (2009) was simulated to validate the proposed
sink algorithm and demonstrate the capability of the SPH scheme to
reproduce upconing of salt water in groundwater aquifers.

3.1. Laboratory-scale coastal freshwater lens

An experiment of formation of a coastal freshwater lens in a cone
shape strip island was presented in Stoeckl and Houben (2012). In the
experiment, a cone shape submerged island 1.8 m long, 0.3 m deep, and
0.05 m wide was utilized (Fig. 2). The porosity and mean hydraulic
conductivity of the porous medium were given as = 0.39 and

= ×K 4.5 10 m s3 1, respectively. The salt and fresh water densities
were = 1021.2 kg ms

3 and = 997.4 kg mf
3, respectively. Initially

the island was saturated up to =y 0.3 m with salt water to represent the
ocean. Freshwater was recharged, with a rate equal to

= ×q 1.33 10 m s5 1, through a set of drips above the sand cone. The
recharged fresh water penetrated into the porous medium (i.e., island)
and formed a freshwater lens as shown in Fig. 2. As the experiment
progressed, an amount of freshwater discharged from the island to the
surrounding salt water representing the ocean. This water was skimmed
from the salt water surface (Fig. 2) to maintain a constant salt water
level (Stoeckl and Houben, 2012).

In the simulation, a plane of symmetry was assumed requiring only
half of the experimental domain to be simulated; this is similar to the
numerical study performed in Stoeckl et al. (2016). The left side of the
island was simulated, and a free-slip boundary condition was used on
the right wall of the domain to satisfy the symmetry of the flow. The
initial spacing between fluid particles ( =x y) was set to 0.005m in
the ocean, and 0.005/ m in the island. The smoothing length, h, was
set to 1.2 x , with x varying in the ocean and island. The time step was
set to ×2 10 s4 . The dynamic viscosity for the fresh water was set to

=µ 10 Pa·sf
3 and it was assumed to be = ×µ 1.05 10 Pa·ss

3 for the
salt water (Isdale et al., 1972). The calculated permeability was

= ×4.6 10 m10 2, using the properties of freshwater and hydraulic
conductivity. No-slip boundary conditions were imposed on the left and
bottom solid boundaries. The longitudinal and transverse dispersivity,
included in Eq. (32), were set to = ×d 5 10 ml

4 and = ×d 5 10 mt
5 ,

and the coefficient of molecular diffusivity was set to =D 10 m sm
9 2 1
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(Stoeckl et al., 2016). The freshwater recharge at the surface of the
island was simulated using an inflow boundary condition (Section
2.5.3). The pressure within the inflow zone was set to be hydrostatic at
every time step. Outside the island, particles that moved above

=y 0.3 m, were deleted to keep the water level constant and mimic the
experimental procedure.

Fig. 3 shows the freshwater lens and the pressure distribution at
different times. The coarser resolution of particles in the porous
medium is due to the definition of spatial volume, that changes in ac-
cordance to porosity of the medium. Experimental or numerical pres-
sure measurements are not available and a qualitative discussion is
reported here. The value of maximum pressure in the porous medium is
higher than that of the free flow domain; this is due to the extra pres-
sure imposed by the inflow particles over the surface of the island. It
was found that changing the thickness of the inflow zone, which
changed the hydrostatic pressure at the surface of the island accord-
ingly, affected the maximum thickness of the lens predicted numeri-
cally. Our investigations showed that the thickness of the inflow zone
should be equal to the radius of the support domain of the kernel
function. The definition of pressure at inflow boundary condition in
SPH is still an open issue, with examples (Nomeritae et al., 2018)
showing the need to adjust the size of inflow zone to reproduce ex-
perimental data.

Oscillations in pressure values occurred at the interface between the
free flow domain and the porous medium (Fig. 3). This might be due to
the fact that for a support domain with its centre located right over the
interface there are different numbers of particles within it from the two
media. Our investigations showed that these oscillations do not sig-
nificantly affect the numerical results.

It was found that with the proper boundary arrangements, the
transient formation as well as the maximum thickness of the lens were
reasonably reproduced. The numerical maximum thickness of the lens
occurred close to the right boundary which is in agreement with the
experimental and numerical results in Stoeckl and Houben (2012) and
Stoeckl et al. (2016). The maximum depth predicted numerically was
16 cm and occurred in the middle of the island after 200min; this was
close to the maximum thickness measured experimentally, 15 cm, that
occurred at the same time.

It is observed in Fig. 3 that the density of salt water in the free flow
domain, at the interface between the free flow domain and the porous
medium and close to the free surface, is lower than the salt water
density. This was due to a horizontal flow within the lens, from the
symmetry boundary toward the left; this was observed in the experi-
ment (Stoeckl and Houben, 2012) and numerical benchmark by Stoeckl
et al. (2016). It was also found that an amount of the discharged fresh
water into the ocean moved back to the island, and again converged
with the horizontal flow of lens water into the salt water surface (Fig. 3,

=t 200 min). This represents the direction of the salt water flow from
the free flow domain into the porous medium. A similar flow direction
was observed in the simulation of Stoeckl et al. (2016).

It is observed that the thickness of the transition between freshwater
and salt water is larger close to the symmetry boundary; likely due to

the higher vertical velocity of particles close to the symmetry boundary
as the effective dispersion matrix is proportional to the velocity of
particles.

The simulation was repeated for four other recharge rates and the
maximum lens thickness was compared to numerical and analytical
solutions (Stoeckl and Houben, 2012; Fetter, 1972; Vacher, 1988) to
investigate the capability of the model to predict the maximum thick-
ness as a function of recharge rate. As observed in Fig. 4a and b, the
EISPH results are in good agreement with the numerical and analytical
results.

The results show that the EISPH can be used to well simulate ap-
plications associated with multi-fluid flows in porous media.

3.2. Salt water upconing in a two-dimensional aquifer

A series of experiments of salt water upconing were presented in
Werner et al. (2009) and their experiment 2 was used for comparison of
the simulations here. In the experiment, a tank 1.18 m long, 1.2 m deep,
and 0.053 m wide was used, as shown in Fig. 5. Four pipes fed fresh-
water and one pipe fed salt water to the tank from both sides. The
conductance (i.e., resistance of the porous medium against the inflow)
was measured as = ×M 2.84 10 m sf

6 2 1 and = ×M 1.62 10 m ss
6 2 1

for the fresh water and salt water, respectively (Jakovovic et al., 2011).
Initially the tank was filled up to 0.15 m with salt water and 1 m depth
of fresh water was filled over the salt water leading to an overall depth

=H 1.15 mb (i.e., the fresh water head measured from the base of the
tank). Fresh water was extracted, using an extraction well with dia-
meter equal to 0.012 m, at the rate = ×Q 7 10 m sp

5 2 1. The well was
placed in the middle of the tank at a depth of 0.65 m from the top of the
tank so that the distance between the well bottom to the initial interface
of freshwater and salt water was 0.4 m (Jakovovic et al., 2011). The
freshwater inflow to the well occurred at the lower 0.1 m of it. The
porosity and hydraulic conductivity were given as = 0.38 and

= ×K 1.6 10 m s3 1, respectively. The density of the salt and fresh
water were = 1025 kg ms

3 and = 998 kg mf
3, respectively (Werner

et al., 2009; Jakovovic et al., 2011). Two manometers were attached at
the boundaries at both sides to measure any drawdown in the fresh
water and salt water head. As the freshwater and salt water head
dropped at the boundaries, an inflow was induced to feed the domain
with both freshwater and salt water. Therefore, the side boundaries
acted as head dependent boundaries.

In the simulation, the initial spacing between fluid particles
( =x y) was set to 0.005/ m. The smoothing length, h, was set to
1.2 x and the time step was ×2 10 s4 . The dynamic viscosity for the
fresh water was set to =µ 10 Pa·sf

3 and it was assumed to be
= ×µ 1.05 10 Pa·ss

3 for salt water (Isdale et al., 1972). The calculated
permeability was = ×1.67 10 m10 2, using the parameters of salt
water and hydraulic conductivity. The lower section of the well (dashed
zone in Fig. 5), where freshwater was flowing into, was treated as a
high permeability section (i.e., the drag force in Eq. (6) was set to zero),
and its length was assumed to be 0.05 m (Jakovovic et al., 2011). The
sink point location was set at the middle of the permeable zone. A no-

Fig. 2. The experimental tank used in Stoeckl and Houben (2012) (Section 3.1).
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Fig. 3. Distribution of fluid density (left) and pressure (right) at different times (Section 3.1).

Fig. 4. (a) Comparison of the EISPH results against experimental data for maximum lens thickness as a function of recharge rate and (b) error bars for the simulations
(Section 3.1).
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slip boundary condition was imposed at the bottom solid boundary. The
coefficient of molecular diffusivity was set to =D 10 m sm

9 2 1, and the
longitudinal and transverse dispersivity were set to = ×d 2 10 ml

3 and
= ×d 1 10 mt

4 (Jakovovic et al., 2011).
The fresh water and salt water recharge were simulated using an

inflow boundary condition (Section 2.5.3), with the rate of the inflow
determined according to the boundaries’ time dependent head. The
inflow was simulated as a continuously distributed recharge rather than
inflow nodes or pipes. This was due to the nature of SPH, as a kernel
close to the boundaries needs to be filled with particles to result in an
accurate approximation. The width of the inflow zones, on the left and
right boundaries, were set to 0.04 m, which was larger than the radius of
the support of the kernel function. The inflow rate for fresh water,
q (m s )f

1 , and salt water, q (m s )s
1 , was calculated using the con-

ductance, initial boundary head (Hb), and time dependent internal head
at the boundaries (Ht) as Jakovovic et al. (2011)

= ×q M H H H( )/((( 0.15)/4) 0.053),f f b t b (15)

and

= ×q M H H( )/(0.15 0.053),s s b t (16)

where Ht was assumed to be the average of the freshwater heads on the
left and right boundaries, to ensure a symmetrical inflow, as it was
observed in the experiment (Werner et al., 2009).

Fig. 6 shows the density distribution and transient development of
the upconing below the extraction well using the method SPR (See
Section 2.3). In the early stages of the experiment (Werner et al., 2009),
a wave-like interface rise was observed; however, this wasn’t observed
in our simulation. This might be due to the continuously distributed
inflow conditions on the sides of the tank, because the wave-like in-
terface rise was due to the localised circulations induced by the node
inflows in the experiment (Jakovovic et al., 2011). The qualitative
observation is in agreement with one of the simulations in Jakovovic
et al. (2011), where a continuously distributed inflow was used.

The dispersion zone at the interface between fresh water and salt
water, especially in the later stages of the simulation, was wider than
the experimental dispersion zone. Our investigations showed that using

a smaller values for longitudinal and transverse dispersivity did not
considerably affect the dispersion zone width. A thicker dispersion
zone, but with smaller extent, was also observed in the simulations of
Jakovovic et al. (2011). This thicker dispersion zone might be related to
the assumption in the SPH approximation of the diffusion equation (see
Eqs. (31)–(34)).

Fig. 7a illustrates the upconing height as a function of time. The
numerical height of the upconing was determined based on the simu-
lated 50% salinity contour (Jakovovic et al., 2011). It was observed that
the SPR method led to results comparatively closer to the experimental
observations. Fig. 7b shows the error bar for the SPR method. The CMR
method considerably overestimated the upconing heigh, possibly be-
cause of the particle distribution pattern around the sink point. Fig. 8
shows the particles around the sink point for the three sink methods.
The particles have an ordered distribution around the sink point in the
SPR, while the particles are clumped for CMR method. The clumping in
CMR is due to the continuous reduction of mass for the sink particles,
until their mass drops to zero. With the density of the particles around
the sink point staying constant, the reduction in mass causes the par-
ticles to get closer to the sink point. Therefore, any support domain of
kernel located in the vicinity of the sink area might be truncated and
causes an error in the particle approximations. The clumping was also
observed in the method MRPR, to a smaller extent especially when
implementing MRPRK , because particles mass were set to their initial
value when a particle was removed.

The stability of the simulations and the qualitative and quantitative
results show the capability of the sink algorithms to reproducing fresh
water pumping in aquifers.

4. Conclusion

Application of SPH schemes to multi-fluid flows in porous media
with different porosities are not very common. In this paper, an EISPH
numerical scheme was used to investigate its applicability to seawater
intrusion problems. The focus was on the dynamics of buoyant fresh-
water lenses in islands and salt water upconing caused by pumping. The
model was tested against published results from laboratory experi-
mental and models.

In the case of the freshwater lens, the transient thickness and
maximum depth of the simulated lens were in reasonable agreement
with experimental data. The simulated maximum depth of the lens as a
function of different recharge rates were in agreement with observed,
analytical and other numerical results. The imposition of flow boundary
conditions to simulate recharge still represents a challenge in SPH. The
lens dimensions obtained with EISPH depended on the thickness of the
inflow zone, as this controlled the value of hydrostatic pressure acting
on the surface of the island. This depths was thus calibrated to best
reproduce experimental data. The inclusion of pumping was the main
challenge to model salt water upconing. A new procedure for im-
plementing a sink in SPH was developed. The divergence of the velocity
for the particles in the vicinity of the sink point was adjusted in ac-
cordance with the pumping rate to make the particles move toward the
sink. The extraction of mass was handled using three different methods
indicated as SPR, MRPR, and CMR. SPR, where the mass reduction is
handled solely through removal of particles, appeared to perform better
when compared to experimental observations. The quantitative results
of the cases studied here show the effectiveness of EISPH in simulating
complex flow conditions and lay the foundation for the inclusion of
mass sinks in SPH numerical schemes applied to water pumping.
Although applied to 2D configurations, the algorithm developed is also
applicable to 3D problems. To preserve reasonable computational
times, future avenues to improve the method point toward the exten-
sion of the model to radial coordinates or, perhaps, the development of
ad hoc changes of the values of permeability and porosity to generate

Fig. 5. The view of the tank used in the experiment by Werner et al. (2009)
(Section 3.2).
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Fig. 6. Transient development of the salt water upconing below the single sink point using method SPR (the yellow lines, representing the bottom (high permeable)
section of the well, are only shown for visualisation purpose) (Section 3.2). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 7. (a) Comparison of upconing height, apex rise, from the observed data and numerical model and (b) error bars for the SPR method (Section 3.2).
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2D domains equivalent to 3D axisymmetric problems (e.g., Langevin
et al., 2008).
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Appendix A. EISPH scheme

This section presents a detail description of the numerical method used to solve Eqs. (1)–(3) with SPH. The numerical scheme selected is EISPH,
which has been shown to be computationally efficient and have lower pressure fluctuations when compared to other SPH schemes (Nomeritae et al.,
2016). Parts of the method are also described in Basser et al. (2017).

The governing equations were solved with an EISPH scheme, which employs two steps (Cummins and Rudman, 1999). The Poisson equation is
approximately solved.

In the first step, viscous, gravity and drag forces contribute to the velocity and position of particles as

= + +u u µ u t g µ u t,i i
n

i

n

i
n

i

n
2

(17)

where u is intermediate velocity, u n is particle velocity at time n t , with t kept constant in all the simulations.
The approximation of the viscous term reads

=
+

+ +=

µ u
m µ µ u x

x
W

4 ( ) ·

( ) (| | )
,

i

n

j

N
j
n

i j ij
n

ij
n

j
n

i
n

j
n

ij
n i ij

n2

1
2 2 2

(18)

where is a small parameter included to make sure the denominator is non-zero ( = h0.001 ij, with hij = (hi + hj)/2), and =u u uij
n

i
n

j
n
. The

gravitational acceleration and the drag term are explicitly calculated.
The intermediate particle positions (x ) are calculated as

= +x x u t,i i
n i

n (19)

where x n is particle position at time n t. Afterwards, the intermediate porosity of particles, , are assigned using the intermediate position of
particles.

In the second step, the particle velocities are calculated at the new time step as

=+ +u u p t,i
n

i
i

i
n i

n1 1

(20)

where +pn 1 is particle pressure at time +n t( 1) . Eqs. (20) and (1) are combined to form the pressure Poisson equation as

= ++p u
t

· · ,n
n

i i

1

(21)

where is the contribution of the sink points around particle i (see Section 2.3).
The approximation of the divergence of the intermediate velocity reads

=
=

u
m

u u W( · ) ( )· .i
j

N
j
n

j j
n j i i ij

1 (22)

The left hand side of Eq. (21) is a Laplacian operator and is approximated as

=
+

+
+

=

+ +p
m x W

x
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| |

( ),n
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1 1

(23)

Fig. 8. The distribution of particles around the sink point, =X 0.63 m and =Y 0.55 m, for methods (a) SPR (b) MRPRE (c) MRPRK and (d) CMR (Section 3.2).
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so that
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+
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=
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Eq. (24) is written for particle i as
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+

+ =

+
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p
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A
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with

=
+

+
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| |

,ij
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j i
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j
n

i j ij i ij

ij
2 2 (26)

and

= +B u
t

· .i
i (27)

Eq. (25) is explicitly solved with an approximation that has been proven to lead to satisfactory results in flow in porous media (Basser et al., 2017) as
well as other applications (Nomeritae et al., 2016; Nomeritae et al., 2018). It is assumed that the value of +pj

n 1 on the right hand side of Eq. (25) is
equal to pj

n; this is a reasonable assumption as the time step is set to a sufficiently small value. In addition, the pressure field in the cases studied here
does not change considerably. The pressure of each particle is thus approximated explicitly as

=
+

+ =

=

p
B A p
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1 (28)

The pressure of free surface particles are set to zero. The calculated pressure values are used to calculate the pressure gradient as

= ++
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Afterwards, the velocity field at the new time step is calculated using Eq. (20). The new position is calculated as

= +
+

+

+

x x t
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,i
n

i
n

u u

1
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(30)

and new particle porosity, +n 1, is assigned. The particle concentration is calculated using Eq. (3) as

D= ++ +C C C t( ·( )) ,i
n

i
n

d
n

i
1 1 (31)

where the effective dispersion matrix, Dd, is determined as Salamon et al. (2006) and Avesani et al. (2015)
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(32)

where dl and dt are longitudinal and transversal dispersivity, I is identity matrix of size 2, and De is effective diffusivity coefficient. In a saturated
porous medium, De can be written as Simunek and Suarez (1993)

D = ×+ +D ( ) ,ei
n

mi i
n1 1 4/3 (33)

where Dm is the coefficient of molecular diffusivity.
Dd in Eq. (32) is a non-diagonal matrix leading to complications with the SPH approximation (Tran-Duc et al., 2016). To simplify the approx-

imation procedure, Dd is reasonably assumed to be a diagonal matrix. The contribution of terms associated with non-diagonal elements of the
dispersion matrix in Eq. (32) were checked in one time step and was found to be nearly three times smaller than the contribution of the diagonal
elements in the cases studied here. The variation of concentration is approximated as Tran-Duc et al. (2016)
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where =e x x/| |ij ij ij is the unit vector from i to j, and D̄d ij is the average of the elements in the effective dispersion matrices of particles i and j.
Afterwards, the particles density and mass are calculated as Pahar and Dhar (2016)

= + ++ +C ( ) 0.5( ),i
n

i
n

s f s f
1 1

(35)
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=+ + +m V ,i
n

i
n

pi
n1 1 1 (36)

where Vp is volume of fluid a particle carries and is equal to =V m /p j j.
The time step value, t , is defined to satisfy the Courant stability and viscous diffusion conditions as

t min t t( , ),CFL visc (37)

with

t h
u

0.25 ,CFL
max (38)

and

t h0.125 ,visc
2

(39)

where is the kinematic viscosity and umax is the maximum velocity predicted in the computations (Morris et al., 1997).
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